生成 Deep Learning 絵を描き、物語や音楽を作り、ゲームをプレイする
https://gyazo.com/aca1fd7063cdfd51ca881b01377fcc05
2022/9/17
生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。第I部は基礎編です。機械学習プログラミング、変分オートエンコーダ、GANやRNNなど、生成モデルの作成において重要な基礎技術を学びます。第II部は応用編です。CycleGAN、エンコーダ―デコーダモデル、MuseGANなどのモデルを作成し、作画、作文、作曲といった創造的なタスクに取り組みます。さらには、実環境を用いずにゲームプレイの学習を可能にする、世界モデルを使った強化学習にも取り組みます。
内容(「BOOK」データベースより)
生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。
著者について
David Foster(デビット・フォスター):Applied Data Scienceの共同創立者(Applied Data Scienceは、オーダーメイドのソリューションを顧客に提供するデータサイエンスコンサルティング会社)。英国のダブリン大学トリニティ・カレッジで数学の修士号、ウォーリック大学でオペレーションズリサーチの修士号を取得。InnoCentiveのPredicting Product Purchaseチャレンジなど複数の機械学習コンペで優勝経験がある。臨床試験の最適化を目的に米国の製薬会社が行ったコンペでもビジュアライゼーション部門で最優秀賞を獲得している。ネット上のデータサイエンスコミュニティに積極的に参加し、深層強化学習に関するすばらしいブログ記事をいくつも投稿している。